RIGIDITY OF CONFIGURATIONS OF POINTS AND SPHERES

Opal Graham Florida State University

Conformal automorphisms of finitely connected regions ('08)

 \mathbb{S}^2

 \mathbb{S}^2

$$\left|p_i,p_j,p_k,p_l\right|=\left|p_i',p_j',p_k',p_l'\right| \ \forall \ \text{4-tuples}$$

Beardon & Minda

$$\left|p_i,p_j,p_k,p_l\right|=\left|p_i',p_j',p_k',p_l'\right|$$
 \forall 4-tuples

Conformal automorphisms of finitely connected regions ('08)

 $\exists f \in \text{M\"ob}(\mathbb{S}^2)$

 \mathbb{S}^2

Question 1. Is the conclusion valid when C_1, \ldots, C_m are any set of m distinct circles in \mathbb{C}_{∞} ?

Beardon & Minda

Question 1. Is the conclusion valid when C_1, \ldots, C_m are any set of m distinct circles in \mathbb{C}_{∞} ?

Crane & Short Answer:

Yes, with appropriate conditions.

Beardon & Minda

Question 2. Do both theorems generalize to higher dimensions?

Beardon & Minda

Question 2. Do both theorems generalize to higher dimensions?

Crane & Short Answer: Yes

Beardon & Minda

Question 2. Do both theorems generalize to higher dimensions?

Crane & Short Answer: Yes

Crane & Short

Rigidity of Configurations of Balls and Points in the *N*-Sphere ('11)

Requires *all* inversive distance information.

Crane & Short

Rigidity of Configurations of Balls and Points in the *N*-Sphere ('11)

Requires *all* inversive distance information.

New question: Can these results be improved upon?

Crane & Short

Rigidity of Configurations of Balls and Points in the *N*-Sphere ('11)

 \mathbb{R}^{n+1} , $\langle \cdot \rangle$:

$$\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n - u_{n+1} v_{n+1}$$

 \mathbb{R}^{n+1} , $\langle \cdot \rangle$:

$$\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n - u_{n+1} v_{n+1}$$

 \mathbb{R}^{n+1} , $\langle \cdot \rangle$:

 $\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n - u_{n+1} v_{n+1}$

 \mathbb{R}^{n+1} , $\langle \cdot \rangle$:

$$\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n - u_{n+1} v_{n+1}$$

$$SO^+(n, 1) \cong Isom^+(\mathbb{H}^n) \cong M\ddot{o}b(\mathbb{S}^{n-1})$$

(n-2)-spheres in \mathbb{S}^{n-1}

(n-2)-spheres in \mathbb{S}^{n-1} \longleftrightarrow

Time-like Lorentz subspaces of $\mathbb{R}^{n+1} \longleftrightarrow$

(n-2)-spheres in \mathbb{S}^{n-1}

Time-like Lorentz subspaces of $\mathbb{R}^{n+1} \longleftrightarrow$

Space-like Lorentz vectors

(n-2)-spheres in \mathbb{S}^{n-1}

Time-like Lorentz subspaces of $\mathbb{R}^{n+1} \longleftrightarrow$

Space-like Lorentz vectors

Fact: Lorentz inner product of two space-like vectors is equal to inversive distance of the corresponding (n-2)-spheres.

Ideal points in \mathbb{S}^{n-1}

Ideal points in $\mathbb{S}^{n-1} \longleftrightarrow$

Light-like Lorentz Subspaces

Ideal points in $\mathbb{S}^{n-1} \longleftrightarrow$

Light-like Lorentz Subspaces \longleftrightarrow

Light-like Lorentz vectors

Ideal points in $\mathbb{S}^{n-1} \longleftrightarrow$

Light-like Lorentz Subspaces \longleftrightarrow

Light-like Lorentz vectors

Lorentz Inner Product: Absolute Cross Ratio

• **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.

- **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.
- **Lemma.** Let $\{C_1, ..., C_{n+1}\}$ be a collection of fixed independent spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$. For spheres C and C',

 $[InvDist(C_i, C) = InvDist(C_i, C') \forall i] \Leftrightarrow C = C'.$

- **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.
- **Lemma.** Let $\{C_1, ..., C_{n+1}\}$ be a collection of fixed independent spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$. For spheres C and C',

 $[InvDist(C_i, C) = InvDist(C_i, C') \forall i] \Leftrightarrow C = C'.$

- **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.
- **Lemma.** Let $\{C_1, ..., C_{n+1}\}$ be a collection of fixed independent spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$. For spheres C and C',

 $[InvDist(C_i, C) = InvDist(C_i, C') \forall i] \Leftrightarrow C = C'.$

- **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.
- **Lemma.** Let $\{C_1, ..., C_{n+1}\}$ be a collection of fixed independent spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$. For spheres C and C',

 $[InvDist(C_i, C) = InvDist(C_i, C') \forall i] \Leftrightarrow C = C'.$

- **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.
- **Lemma.** Let $\{C_1, ..., C_{n+1}\}$ be a collection of fixed independent spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$. For spheres C and C',

 $[InvDist(C_i, C) = InvDist(C_i, C') \forall i] \Leftrightarrow C = C'.$

- **Definition.** A collection of (n-2)-spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$ is *independent* if their corresponding Lorentz vectors are linearly independent.
- Lemma. Let $\{C_1, \dots, C_{n+1}\}$ be a collection of fixed independent spheres in $\mathbb{S}^{n-1} \subset \mathbb{R}^{n+1}$. For spheres C and C',

 $[InvDist(C_i, C) = InvDist(C_i, C') \forall i] \Leftrightarrow C = C'.$

New Rigidity Statement

New Rigidity Statement

New Rigidity Statement

$New\ Rigidity$ Statement

New Rigidity Statement

Requires *less* inversive distance information

• Ideal points and spheres:

Ideal points and spheres:

• Ideal points and spheres:

• Ideal points and spheres:

$Projective\ Polyhedra$

$Projective \\ Polyhedra$

Andre'ev ('70); Rivin & Hodgson ('93)

$Projective \\ Polyhedra$

Andre'ev ('70); Rivin & Hodgson ('93)

Rivin ('96)

$Projective \\ Polyhedra$

Andre'ev ('70); Rivin & Hodgson ('93)

Rivin ('96)

Bao & Bonahon ('02); Bowers, Bowers, Pratt ('18)

THANK YOU!

Hyperbolic Points in \mathbb{H}^n

Hyperbolic Points in $\mathbb{H}^n \longleftrightarrow$

Space-like Lorentz subspaces

Hyperbolic Points in $\mathbb{H}^n \longleftrightarrow$

Space-like Lorentz subspaces ←→

Time-Like Lorentz unit vectors

Hyperbolic Points in $\mathbb{H}^n \longleftrightarrow$

Space-like Lorentz subspaces ←→

Time-Like Lorentz unit vectors

Fact: Lorentz inner product corresponds to hyperbolic distance

• Ideal points and spheres:

New Rigidity Statement— Points

Hyperbolic points and hyperplanes: Independence?

New Rigidity Statement— Points

Ideal points and spheres:

• Hyperbolic points and hyperplanes: Independence?

New Rigidity Statement— Points

Ideal points and spheres:

• Hyperbolic points and hyperplanes: Independence?

$Inversive \\ Distance \\ Primer$

Inversive Distance Primer

$Inversive \\ Distance \\ Primer$

$$1 < (C, C') = \cos(id_H(x, y)) < \infty$$

$$1 < (C, C') = \cos(id_H(x, y)) < \infty$$

Crane & Short's Condition

$$\not\exists f \in \text{M\"ob}(\widehat{\mathbb{C}})$$

Crane & Short's Condition

Crane & Short's Condition

Point ∞ common to all circles

Crane & Short's Condition

Point ∞ common to All space-like

all circles

vectors lie on
common light-like
space