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S
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Crane & Short Answer:
Yes, with appropriate
conditions.
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Question 2. Do both
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Crane & Short Answer:
Yes
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Requires all inversive
distance information.

New question: Can these
results be improved upon?
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Space-like Lorentz vectors

Fact: Lorentz inner product of two space-
like vectors is equal to inversive distance
of the corresponding (n — 2)-spheres.
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Lorentz Inner Product:
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Linearly
Independent
Lorentz
Vectors

* Definition. A collection of (n — 2)-spheres in
S"~1 c R"*1 is independent if their
corresponding Lorentz vectors are linearly
independent.

 Lemma. Let {Cy, ..., C,,+1} be a collection of
fixed independent spheresin $*~1 ¢ R**1,
For spheres C and C’,

[InvDist(C;, C) = InvDist(C;,C")Vi] & C = C'.

* Analogous to:
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Fact: Lorentz inner product
corresponds to hyperbolic
distance
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